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Projects In Optics

Preface

The Projects in Optics Kit is a set of laboratory equip-
ment containing all of the optics and optomechanical
components needed to complete a series of experiments
that will provide students with a basic background in
optics and practical hands-on experience in laboratory
techniques. The projects cover a wide range of topics
from basic lens theory through interferometry and the
theory of imaging. The Project in Optics Handbook has
been developed by the technical staff of Newport
Corporation and Prof. D. C. O’Shea, in order to provide
educators with a convenient means of stimulating their
students’ interest and creativity.

This handbook begins with a description of several
mechanical assemblies that will be used in various
combinations for each experiment. In addition, these
components can be assembled in many other configu-
rations that will allow more complex experiments to be
designed and executed. One of the benefits from
constructing these experiments using an optical bench
(sometimes called an optical breadboard) plus standard
components, is that the student can see that the compo-
nents are used in a variety of different circumstances to
solve the particular experimental problem, rather than
being presented with an item that will perform only one
task in one way.

A short Optics Primer relates a number of optical
phenomena to the ten projects in this handbook. Each
project description contains a statement of purpose that
outlines the phenomena to be measured, the optical
principle is being studied, a brief lock at the relevant
equations governing the experiment or references to the
appropriate section of the Primer, a list of all necessary
equipment, and a complete step-by-step instruction set
which will guide the student through the laboratory
exercise. After the detailed experiment description is a
list of somewhat more elaborate experiments that will
extend the basic concepts explored in the experiment.
The ease with which these additional experiments can be
done will depend both on the resources at hand and the
inventiveness of the instructor and the student.

The equipment list for the individual experiments is given
in terms of the components assemblies, plus items that
are part of the project kits. There are a certain number of
required items that are to be supplied by the instructor.
Items such as metersticks and tape measures are easily
obtainable. Others, for the more elaborate experiments,
may be somewhat more difficult, but many are found in



most undergraduate programs. Note that along with
lasers and adjustable mirror mounts, index cards and
tape is used to acquire the data. The student should
understand that the purpose of the equipment is to get
reliable data, using whatever is required. The student
should be allowed some ingenuity in solving some of the
problems, but if his or her choices will materially affect
their data an instructor should be prepared to intervene.

These experiments are intended to be used by instructors
at the sophomore/junior level for college engineering and
physical science students or in an advanced high school
physics laboratory course. The projects follow the general
study outline found in most optical text books, although
some of the material on lasers and imaging departs from
the standard curriculum at the present time. They should
find their greatest applicability as instructional aids to
reinforcing the concepts taught in these texts.

Acknowledgement: A large part of the text and many of
the figures of “An Optics Primer” are based on Chapter
One of Elements of Modern Optical Design by Donald C.
O'Shea, published by J. Wiley and Sons, Inc., New York
©1985. They are reprinted with permission of John Wiley
& Sons, Inc. .
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0.0 An Optics Primer

The field of optics is a fascinating area of study. In
many areas of science and engineering, the under-
standing of the concepts and effects in that field can be
difficult because the results are not easy to display. But
in optics, you can see exactly what is happening and
you can vary the conditions and see the results. This
primer is intended to provide an introduction to the 10
optics demonstrations and projects contained in this
Projects in Optics manual. A list of references that can
provide additional background is given at the end of
this primer.

0.1 Geometrical Optics

There is no need to convince anyone that light travels
in straight lines. When we see rays of sunlight pouring
between the leaves of a tree in a light morning fog, we
trust our sight. The idea of light rays traveling in
straight lines through space is accurate as long as the
wavelength of the radiation is much smaller than the
windows, passages, and holes that can restrict the path
of the light. When this is not true, the phenomenon of
diffraction must be considered, and its effect upon the
direction and pattern of the radiation must be calcu-
lated. However, to a first approximation, when diffrac-
tion can be ignored, we can consider that the progress
of light through an optical system may be traced by
following the straight line paths or rays of light through
the system. This is the domain of geometrical optics.

Part of the beauty of optics, as it is for any good game,
Is that the rules are so simple, yet the consequences so
varied and, at times, elaborate, that one never tires of
playing. Geometrical optics can be expressed as a set
of three laws:

1. The Law of Transmission.

In a region of constant refractive index, light
travels in a straight line.

2. Law of Reflection.

Light incident on a plane surface at an angle 6,
with respect to the normal to the surface is
reflected through an angle 6 equal to the inci-
dent angle (Fig. 0.1).

6=6 (0.1)

Figure 0.1 Reflection and refraction of light at an
interface.



iy <11

2 3

Figure 0.2. Three rays incident at angles near or at
the critical angle.

Y

Figure 0.3. Total internal reflection from prisms.

3. Law of Refraction (Snell’s Law).

Light in a medium of refractive index n, incident
on a plane surface at an angle 8 with respect to
the normal is refracted at an angle 8 in a medium
of refractive index n, as (Fig. 0.1),

n sind = n sing, 0-2)

A corollary to these three rules is that the incident,
reflected, and transmitted rays, and the normal to the
interface all lie in the same plane, called the plane of
incidence, which is defined as the plane containing the
surface normal and the direction of the incident ray.

Note that the third of these equations is not written as
a ratio of sines, as you may have seen it from your
earlier studies, but rather as a product of n siné. This is
because the equation is unambiguous as to which
refractive index corresponds to which angle. If you
remember it in this form, you will never have any
difficulty trying to determine which index goes where
in solving for angles. Project #1 will permit you to
verify the laws of reflection and refraction.

A special case must be considered if the refractive
index of the incident medium is greater than that of the
transmitting medium, (n, >n ). Solving for 6, we get

siné = (n /n) sinf, (0-3)

In this case, n /n, > 1, and sing, can range from 0 to 1.
Thus, for large angles of g it would seem that we could
have sing, > 1. But sin§, must also be less than one, so
there is a critical angle 6, = 8, where sin 6 - n /n, and
sin@ = 1. This means the transmitted ray is traveling
perpendicular to the normal (i.e., parallel to the inter-
face), as shown by ray #2 in Fig. 0.2. For incident
angles 8 gdreater than 6 no light is transmitted.
Instead the light is totally reflected back into the
incident medium (see ray #3, Fig. 0.2). This effect is
called total internal reflection and will be used in
Project #1 to measure the refractive index of a prism.

As illustrated in Fig. 0.3, prisms can provide highly
reflecting non-absorbing mirrors by exploiting total
internal reflection.

Total internal reflection is the basis for the transmis-
sion of light through many optical fibers. We do not
cover the design of optical fiber systems in this manual
because the application has become highly specialized
and more closely linked with modern communications
theory than geometrical optics. A separate manual and
series of experiments on fiber optics is available from
Newport in our Projects in Fiber Optics.
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0.1.1. Lenses

In most optical designs, the imaging components — the
lenses and curved mirrors — are symmetric about a
line, called the optical axis. The curved surfaces of a
lens each have a center of curvature. A line drawn
between the centers of curvatures of the two surfaces
of the lens establishes the optical axis of the lens, as
shown in Fig.0.4. In most cases, it is assumed that the
optical axes of all components are the same. This line
establishes a reference line for the optical system.

By drawing rays through a series of lenses, one can
determine how and where images occur. There are
conventions for tracing rays; although not universally
accepted, these conventions have sufficient usage that
it is convenient to adopt them for sketches and calcula-
tions.

1. An object is placed to the left of the optical sys-
tem. Light is traced through the system from left
to right until a reflective component alters the
general direction.

Although one could draw some recognizable
object to be imaged by the system, the simplest
object is a vertical arrow. (The arrow, imaged by
the optical system, indicates if subsequent
images are erect or inverted with respect to the
original object and other images.) If we assume
light from the object is sent in all directions, we
can draw a sunburst of rays from any point on
the arrow. An image is formed where all the rays
from the point, that are redirected by the optical
system, again converge to a point.

A positive lens is one of the simplest image-
forming devices. If the object is placed very far
away (“at infinity” is the usual term), the rays
from the object are parallel to the optic axis and
produce an image at the focal point of the lens, a
distance f from the lens (the distance f is the
focal length of the lens), as shown in Fig. 0.5(a).
A negative lens also has a focat point, as shown
in Fig. 0.5(b). However, in this case, the parallel
rays do not converge to a point, but instead
appear to diverge from a point a distance 7 in
front of the lens.

2. Alight ray parallel to the optic axis of a lens will
pass, after refraction, through the focal point, a
distance f from the vertex of the lens.

3. Light rays which pass through the focal point of
a lens will be refracted parallel to the optic axis.

4. A light ray directed through the center of the
lens is undeviated.

i

R, fl | TR
- < — - ———Optical Axis — - —— -
Center of pg | Center of
curvature ! | curvature
of surface 1

of surface 2 \_/

Figure 0.4 Optical axis of a lens.

b.

Figure 0.5. Focusing of parallel light by positive and
negative lenses.
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Figure 0.6. Imaging of an object point by a positive
lens. A real inverted image with respect to the object
is formed by the lens.

Figure 0.7. Imaging of an object point by a negative
lens. A virtual erect image with respect to the object
is formed by the lens.

The formation of an image by a positive lens is
shown in Fig, 0.6. Notice that the rays cross at a
point in space. If you were to put a screen at that
point you would see the image in focus there.
Because the image can be found at an accessible
plane in space, it is called a real image. For a
negative lens, the rays from an object do not
cross after transmission, as shown in Fig. 0.7,
but appear to come from some point behind the
lens. This image, which cannot be observed on a
screen at some point in space, is called a virtual
image. Another example of a virtual image is the
jmage you see in the bathroom mirror in the
morning. One can also produce a virtual image
with a positive lens, if the object is located
between the vertex and focal point. The labels,
“real” and “virtual”, do not imply that one type of
image is useful and the other is not. They simply
indicate whether or not the rays redirected by
the optical system actually cross.

Most optical systems contain more than one lens
or mirror. Combinations of elements are not
difficult to handie according to the following
rule:

5. The image of the original object produced by the
first element becomes the object for the second
element. The object of each additional element is
the image from the previous element.

More elaborate systems can be handled in a
similar manner. In many cases the elaborate
systems can be broken down into simpler
systems that can be handled separately, at first,
then joined together later.

0.2 Thin Lens Equation

Thus far we have not put any numbers with the ex-
amples we have shown. While there are graphical
methods for assessing an optical system, sketching
rays is only used as a design shorthand. It is through
calculation that we can determine if the system will do
what we want it to. And it is only through these calcula-
tions that we can specify the necessary components,
modify the initial values, and understand the limita-
tions of the design.

Rays traced close to the optical axis of a system, those
that have a small angle with respect to the axis, are
most easily calculated because some simple approxi-
mations can be made in this region. This approxima-
tion is called the paraxial approximation, and the rays
are called paraxial rays.
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Before proceeding, a set of sign conventions should be
set down for the thin lens calculations to be consid-
ered next. The conventions used here are those used in
most high school and college physics texts. They are
not the conventions used by most optical engineers.
This is unfortunate, but it is one of the difficulties that
is found in many fields of technology. We use a stan-
dard right-handed coordinate system with light propa-
gating generally along the z-axis.

1. Light initially travels from left to right in a
positive direction.

2. Focal lengths of converging elements are posi-
tive; diverging elements have negative focal
lengths.

3. Object distances are positive if the object is
located to the left of a lens and negative if
located to the right of a lens.

4. Image distances are positive if the image is found
to the right of a lens and negative if located to
the left of a lens.

We can derive the object-image relationship for a lens.
With reference to Fig. 0.8 let us use two rays from an
off-axis object point, one parallel to the axis, and one
through the front focal point. When the rays are
traced, they form a set of similar triangles ABC and
BCD. In ABC,

hoth, B,
s, f (0-42)
and in BCD
h,+h, h,
s, F (0-4b)

Adding these two equations and dividing through by
h_ + h, we obtain the thin lens equation

P11

f s, s

.8, (6-5)
Solving equations 04a and 0-4b for i1 + /1, , you can
show that the transverse magnification or lateral
magnification, M, of a thin lens, the ratio of the image
height A, to the object height 4, is simply the ratio of

the image distance over the object distance:

“h s, ©6)

With the inclusion of the negative sign in the equation,
not only does this ratio give the size of the final image,
its sign also indicates the orientation of the image

— 3 =t - .
\ T \'

-C D A

Figure 0.8. Geometry for a derivation of the thin lens
equation.
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Figure 0.9 Determination of the focal length of a
negative lens with the use of a positive lens of known
focal length.

relative to the object. A negative sign indicates that
the image is inverted with respect to the object. The
axial or longitudinal magnification, the magnification of
a distance between two points on the axis, can be
shown to be the square of the lateral or transverse
magnification.

M, =M"?
(0-7)
In referring to transverse magnification, an unsub-
scripted M will be used.

The relationship of an image to an object for a positive
focal length lens is the same for all lenses. If we start
with an object at infinity we find from Eq. 0-5 that for a
positive lens a real image is located at the focal point
of the lens (1/s_ = 0, therefore s, = f), and as the object
approaches the lens the image distance increases until
it reaches a point 2f on the other side of the lens. At
this point the object and images are the same size and
the same distance from the lens. As the object is
moved from 2f to f, the image moves from 2f to
infinity. An object placed between a positive lens and
its focal point forms a virtual, magnified image that de-
creases in magnification as the object approaches the
lens. For a negative lens, the situation is simpler:
starting with an object at infinity, a virtual image,
demagnified, appears to be at the focal point on the
same side of the lens as the object. As the object
moves closer to the lens so does the image, until the
image and object are equal in size at the lens. These
relationships will be explored in detail in Project #2.

The calculation for a combination of lenses is not
much harder than that for a single lens. As indicated
earlier with ray sketching, the image of the preceding
lens becomes the object of the succeeding lens.

One particular situation that is analyzed in Project #2
is determining the focal length of a negative lens. The
idea is to refocus the virtual image created by the
negative lens with a positive lens to create a real
image. In Fig. 0.9 a virtual image created by a negative
lens of unknown focal length £, is reimaged by a
positive lens of known focal length f,. The power of the
positive lens is sufficient to create a real image at a
distance s, from it. By determining what the object
distance s, should be for this focal length and image
distance, the location of the image distance for the
negative lens can be found based upon rule 5 in Sec.
0.1: the image of one lens serves as the object for a
succeeding lens. The image distance s, for the negative
lens is the separation between lenses f minus the
object distance s, of the positive lens. Since the
original object distance s, and the image distance s,
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have been found, the focal length of the negative lens
can be found from the thin lens equation.

In many optical designs several lenses are used to-
gether to produce an improved image. The effective
focal length of the combination of lenses can be calcu-
lated by ray tracing methods. In the case of two thin
lenses in contact, the effective focal length of the
combination is given by

1
i h (0-8)

0.3 Diffraction

Although the previous two sections treated light as
rays propagating in straight lines, this picture does not
fully describe the range of optical phenomena that can
be investigated within the experiments in Projects in
Optics. There are a number of additional concepts that
are needed to explain certain limitations of ray optics
and to describe some of the techniques that allow us to
analyze images and control the amplitude and direc-
tion of light. This section is a brief review of two
important phenomena in physical optics, interference
and diffraction. For a complete discussion of these and
related subjects, the reader should consult one or
more of the references.

0.3.1 Huygen’s Principle

Light is an electromagnetic wave made up of many
different wavelengths. Since light from any source
(even a laser!) consists of fields of different wavelength,
it would seem that it would be difficult to analyze their
resultant effect. But the effects of light made up of
many colors can be understood by determining what
happens for a monochromatic wave (one of a single
wavelength) then adding the fields of all the colors
present. Thus by analysis of these effects for mono-
chromatic light, we are able to calculate what would
happen in non-monochromatic cases. Although it is
possible to express an electromagnetic wave mathe-
matically, we will describe light waves graphically and
then use these graphic depictions to provide insight to
several optical phenomena. In many cases it is all that
is needed to get going.

An electromagnetic field can be pictured as a combina-
tion of electric (£) and magnetic (H) fields whose
directions are perpendicular to the direction of propa-
gation of the wave (k), as shown in Fig. 0.10. Because
the electric and magnetic fields are proportional to
each other, only one of the fields need to be described
to understand what is happening in a light wave. In

X
A

Y ‘/"

Figure 0.10. Monochromatic plane wave propagating
along the z axis. For a plane wave, the electric field
is constant in an x-y plane, The vector k is in the
direction of propagation.

Figure 0.11. Monochromatic plane wave propagat-
ing along the z-axis. For a plane wave, the electric
field is constant in an x-y plane. The solid lines and
dashed lines indicate maximum positive and
negative field amplitudes.




most cases, a light wave is described in terms of the

electric field. The diagram in Fig 0.10 represents the

field at one point in space and time. It is the arrange-
ment of the electric and magnetic fields in space that
determines how the light field progresses.

One way of thinking about light fields is to use the
concept of wavefront. If we plot the electric fields as a

y
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Point- ) 11| ! | I | L ‘ ‘ ‘ function of time along the direction of propagation,
Source /' / /] | Pblr ;' ! ! . there are places on the wave where the field is a maxi-
4 // IS mum in one direction and other places where it is zero,
4 /’//// /) / / /‘" /7 and other places where the field is a maximum in the
s s opposite direction, as shown in Fig. 0.11. These repre-
sent different phases of the wave. Of course, the phase
Figure 0.12. Spherical waves propagating outward of the wave changes continuously along the direction of
from the point source. Far from the point source, the propagation. To follow the progress of a wave, however,
radius of the wavefront is large and the wavefronts we will concentrate on one particular point on the
approximate plane waves. phase, usually at a point where the electric field ampli-

tude is a maximum. If all the points in the neighborhood
have this same amplitude, they form a surface of
constant phase, or wavefront. In general, the
wavefronts from a light source can have any shape, but
some of the simpler wavefront shapes are of use in
describing a number of optical phenomena.

A plane wave is a light field made up of plane surfaces
of constant phase perpendicular to the direction of
propagation. In the direction of propagation, the electric
field varies sinusoidally such that it repeats every
wavelength. To represent this wave, we have drawn the
planes of maximum electric field strength, as shown in
Fig. 0.11, where the solid lines represent planes in
which the electric field vector is pointing in the positive
y-direction and the dashed lines represent plane in
which the electric field vector is pointing in the negative
y-direction. The solid planes are separated by one
wavelength, as are the dashed planes.

Figure 0.13. Generation of spherical waves by focus-
ing plane waves to a point. Diffraction prevents the
waves from focusing to a point.

Another useful waveform for the analysis of light waves
is the spherical wave. A point source, a fictitious source
of infinitely small dimensions, emits a wavefront that
travels outward in all directions producing wavefronts
consisting of spherical shells centered about the point
source. These spherical waves propagate outward from
the point source with radii equal to the distance be-
tween the wavefront and the point source, as shown
schematically in Fig. 0.12. Far away from the point
source, the radius of the wavefront is so large that the
wavefronts approximate plane waves. Another way to
create spherical waves is to focus a plane wave. Figure
0.13 shows the spherical waves collapsing to a point
and then expanding. The waves never collapse to a true
point because of diffraction (next Section). There are
many other possible forms of wave fields, but these two
are all that is needed for our discussion of interference.

0
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What we have described are single wavelronts. What
happens when two or more wavefronts are present in
the same region? Electromagnetic theory shows that
we can apply the principle of superposition: where
waves overlap in the same region of space, the resul-
tant field at that point in space and time is found by
adding the electric fields of the individual waves at a
point. For the present we are assuming that the electric
fields of all the waves have the same polarization
(direction of the electric field) and they can be added
as scalars. If the directions of the fields are not the
same, then the fields must be added as vectors. Neither
our eyes nor any light detector “sees” the electric field
of a light wave. All detectors measure the square of the
time averaged electric field over some area. This is the
irradiance of the light given in terms of watts/square
meter (w/m®) or similar units of power per unit area.

Given some resultant wavefront in space, how do we
predict its behavior as it propagates? This is done by
invoking Huygen'’s Principle. Or, in terms of the
graphical descriptions we have just defined, Huygen's
Construction (see Fig. 0.14): Given a waveiront of
arbitrary shape, locate an array of point sources on the
wavefront, so that the strength of each point source is
proportional to the amplitude of the wave at that point.
Allow the point sources to propagate for a time ¢, so
that their radii are equal to ¢t (¢ is the speed of light)
and add the resulting sources. The resultant envelope
of the point sources is the wavefront at a time ¢ after
the initial wavefront. This principle can be used to
analyze wave phenomena of considerable complexity.

0.3.2 Fresnel and Fraunhofer Diffraction

Diffraction of light arises from the effects of apertures
and interface boundaries on the propagation of light. In
its simplest form, edges of lenses, apertures, and other
optical components cause the light passing through
the optical system to be directed out of the paths
indicated by ray optics. While certain diffraction effects
prove useful, ultimately all optical performance is
limited by diffraction, if there is sufficient signal, and
by electrical or optical “noise”, if the signal is small.

When a plane wave illuminates a slit, the resulting
wave pattern that passes the slit can be constructed
using Huygens’ Principle by representing the wavefront
in the slit as a collection of point sources all emitting in
phase. The form of the irradiance pattern that is
observed depends on the distance from the diffraction
aperture, the size of the aperture and the wavelength
of the illumination. If the diffracted light is examined
close to the aperture, the pattern will resemble the
aperture with a few surprising variations {(such as

Point
Source

Wavefront
after time ¢

Figure. 0.14. Huygen’s Construction of a propagating
wavefront of arbitrary shape.

11
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Figure 0.15. Diffraction of light by apertures. (a)
Single slit. (b} Circular aperture,
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finding a point of light in the shadow of circular mask?).
This form of diffraction is called Fresnel (Freh-nell)
diffraction and is somewhat difficult to calculate.

At a distance from the aperture the pattern changes
into a Fraunhofer diffraction pattern. This type of
diffraction is easy to caiculate and determines in most
cases, the optical limitations of most precision optical
systems. The simplest diffraction pattern is that due to
a long slit aperture. Because of the length of the slit
relative to its width, the strongest effect is that due to
the narrowest width. The resulting diffraction pattern
of a slit on a distant screen contains maxima and
minima, as shown in Fig. 0.15(a). The light is diffracted
strongly in the direction perpendicular to the slit
edges. A measure of the amount of diffraction is the
spacing between the strong central maximum and the
first dark fringe in the diffraction pattern. The differ-
ences in Fraunhofer and Fresnel diffraction patterns
will be explored in Project #4.

At distances far from the slit, the Fraunhofer diifraction
pattern does not change in shape, but only in size. The
fringe separation is expressed in terms of the sine of
the angular separation between the central maximum
and the center of the first dark fringe,

sin 8 = i
w (0-9)

where w is the slit width and 4 is the wavelength of the
light illuminating the slit. Note that as the width of the
slit becomes smaller, the diffraction angle becomes
larger. if the slit width is not too small, the sine can be
replaced by its argument,

(0-10)

If the wavelength of the light illuminating the slit is
known, the diffraction angle can be measured and the
width of the diffracting slit determined. In Project #5
you will be able to do exactly this.

In the case of circular apertures, the diffraction pattern
is also circular, as indicated in Fig. 0.15(b), and the
angular separation between the central maximum and
the first dark ring is given by

sin 8 =122 i
D

or for large D,

(0-11)
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where D is the diameter of the aperture. As in the case
of the slit, for small values of 1 /D, the sine can be
replaced by its angle. The measurement of the diame-
ter of different size pinholes is part of Project #4.

One good approximation of a point source is a bright
star. A pair of stars close to one another can give a
measure of the diffraction limits of a system. If the
stars have the same brightness, the resolution of the
system can be determined by the smallest angular
separation between such sources that would still atlow
them to be resolved, This is provided that the aberra-
tions of the optical system are sufficiently small and
diffraction is the only limitation to resolving the images
of these two point sources. Although it is somewhat
artificial, a limit of resolution that has been used in
many instances is that two point sources are just re-
solvable if the maximum of the diffraction pattern of
one point source falls on the first dark ring of the
pattern of the second point source, as illustrated in Fig.
0.16, then
g, =122 A
b (0-12)

This condition for resolution is called the Rayleigh
criterion. It is used in other fields of optical design,
such as specifying the resolution of a optical systems.

(.4 Interference

While diffraction provides the limits that tells us how
far an optical technique can be extended, interference
is responsible for some of the most useful effects in the
field of optics — from diffraction gratings to hologra-
phy. As we shall see, an interference pattern is often
connected with some simple geometry. Once the
geometry is discovered, the interference is easily
understood and analyzed.

0.4.1. Young's Experiment

In Fig. 0.17 the geometry and wave pattern for one of
the simplest interference experiments, Young'’s experi-
ment, is shown. Two small pinholes, separated by a
distance d, are illuminated by a plane wave, producing
two point sources that create overlapping spherical
waves. The figure shows a cross-sectional view of the
wavelronts from both sources in a plane containing the
pinholes. Notice that at points along a line equidistant
from both pinholes, the waves from the two sources
are always in phase. Thus, along the line marked C the
electric fields always add in phase to give a field that is
twice that of a single field; the irradiance at a point

A

0=1.22 A

o

Figure .16. Rayleigh criterion. The plot of the
intensity along a line between the centers of the two
diffraction patterns is shown below a photo of two
sources just resolved as specified by the Rayleigh cri-
terion. (Photo by Vincent Mallette)

51

S

Figure 0.17. Young’s Experiment. Light diffracted
through two pinholes in screen S, spreads out toward
screen §,. Interference of the two spherical waves
produces a variation in irradiance (interference
fringes) on §, that is plotted to the right of the
screem.

13
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Figure 0.18. Michelson interferometer. By reflecting
the mirror M, about the plane of the beamsplitter BS
to location M’,, one can see that a ray reflecting off
mirror M, travels an additional distance 2(L, - L))
over a ray reflecting off M.
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along the line, which is proportional to the square of
the electric field, will be four times that due to a single
pinhole. When electric fields add together to give a
larger value it is referred to as constructive interfer-
ence. There are other directions, such as those along
the dotted lines marked D, in which the waves from the
two sources are always 180° out of phase. That s,
when one source has a maximum positive electric field,
the other has the same negative value so the fields
always cancel and no light is detected along these lines
marked D, as long as both sources are present. This
condition of canceling electric fields is called destruc-
tive interference. Between the two extremes of maxi-
mum constructive and destructive interference, the
irradiance varies between four times the single pinhole
irradiance and zero. It can be shown that the total
energy falling on the surface of a screen placed in the
interference pattern is neither more nor less than twice
that of a single point source; it is just that interference
causes the light distribution to be arranged differently!

Some simple calculations will show that the difference
in distances traveled from pinholes to a point on the
screen is

Ar = d sin®. (0-13)

In the case of constructive interference, the wavefronts
arrive at the screen in phase. This means that there is
either one or two or some integral number of wave-
length difference between the two paths traveled by
the light to the point of a bright fringe. Thus, the angles
at which the bright fringes occur are given by

Ar=dsinf=ni (n=1,23..). (0-14)

If the above equation is solved for the angles 8_at
which the bright fringes are found and cne applies the
approximation that for small angles the sine can be
replaced by its angle in radians, one obtains:

0 =nAjd Mm=1,2,3..). (0-15)

The angular separation by neighboring fringes is then
the difference between 8 and 8,

Ae=A/d. (0-16)

It is this angular separation between fringes that will be
measured in Project #5 to determine the separation
between two slits.

0.4.2 The Michelson Interferometer

Another interference geometry that will be investigated
in Project #6 and used to measure an important pa-
rameter for a laser in Project #7 is shown in Fig. 0.18.
This is a Michelson interferometer, which is con-
structed from a beamsplitter and two mirrors. (This
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device is sometimes called a Twyman-Green interfer-
ometer when it is used with a monochromatic source,
such as a laser, to test optical components.) The
beamsplitter is a partially reflecting mirror that sepa-
rates the light incident upon it into two beams of equal
strength. After reflecting off the mirrors, the two beams
are recombined so that they both travel in the same
direction when they reach the screen. If the two
mirrors are the same distance (L, = £, in Fig. 0.18) from
the beamsplitter, then the two beams are always in
phase once they are recombined, just as is the case
along the line of constructive interference in Young’'s
experiment. Now the condition of constructive and
destructive interference depends on the difference
between the paths traveled by the two beams. Since
each beam must travel the distance from the
beamsplitter to its respective mirror and back, the
distance traveled by the beam is 2L. If the path-length
difference, 2L - 2L, is equal to an integral number of
wavelengths, m A, where m is an integer, then the two
waves are in phase and the interference at the screen
will be constructive.

Li-L,=mA/2 (m=...,-1,0,1,2,..). (017

If the path-iength difference is an integral number of
wavelengths plus a half wavelength, the interference on
the screen will be destructive. This can be expressed
as

L -L,=mAf4 (m = odd integers). (0-18)

In most cases the wavefronts of the two beams when
they are recombined are not planar, but are spherical
wavefronts with long radii of curvature. The interfer-
ence pattern for two wavefronts of different curvature
is a series of bright and dark rings. However, the above
discussion still holds for any point on the screen.
Usually, however, the center of the pattern is the point
used for calculations.

In the above discussion, it was assumed that the
medium between the beamsplitter and the mirrors is
undisturbed air. If, however, we allow for the possibil-
ity that the refractive index in those regions could be
different, then the equation for the bright fringes
should he written as

nl-ml,=mA/2 (m=...-1,0,1,2,..). (0-17a)

Thus, any change in the refractive index in the regions
can also contribute to the interference pattern as you
will see in Project #6.

In optical system design, interferometers such as the
Michelson interferometer can be used to measure very
small distances. For example, a movement of one of the
mirrors by only one quarter wavelength (correspond-
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Figure 0.19. Diffraction of light by a diffraction

grating.
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Figure 0.20. Orders of diffraction from a grating illn-
minated by white light. (a) Rays denoting the upper
and lower bounds of diffracted beams for the red (R)
and blue (B) ends of the spectrum; {b} spectra pro-
duced by focusing each collimated beam of wave-

lengths to a point in the focal plane.
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ing to a path-length change of one half wavelength)
changes the detected irradiance at the screen from a
maximum to a minimum. Thus, devices containing
interferometers can be used to measure movements of a
fraction of a wavelength. One application of interference
that has developed since the invention of the laser is
holography. This fascinating subject is explored in a
separate set of experiments in Newport's Projects in
Holography.

0.4.3. The Diffraction Grating

It is a somewhat confusing use of the term to call the
item under discussion a diffraction grating. Although
diffraction does indeed create the spreading of light
from a regular array of closely spaced narrow slits, it is
the combined interference of multiple beams that
permits a diffraction grating to deflect and separate the
light. In Fig. 0.19 a series of narrow slits, each separated
from its neighboring slits by distance d, are illuminated
by a plane wave. Each slit is then a point (actually a
line) source in phase with all other slits. At some angle
g, to the grating normal, the path-length difference
between neighboring slits will be (see inset to Fig. 0.19)

Ax = d sin(6,),

Constructive interference will occur at that angle if the
path-length difference Ax is equal to an integral number
of wavelengths:

mA=dsin(8,) (m =aninteger). 0-19)

This equation, called the grating equation, holds for any
wavelength. Since any grating has a constant slit
separation d, light of different wavelengths will be
diffracted at different angles. This is why a diffraction
grating can be used in place of a prism to separate light
into its colors. Because a number of integers can satisfy
the grating equation, there are a number of angles into
which monochromatic light will be diffracted. This will
be examined in Project #5. Therefore, when a grating is
illuminated with white light, the light will be dispersed
into a number of spectra corresponding to the integers
m=...,x1, 22, ..., asillustrated in Fig. 0.20(a). By
inserting a lens after the grating, the spectra can be
displayed on a screen one focal length from the lens,
Fig. 0.20(b). These are called the orders of the grating
and are labeled by the value of m.

0.5. Polarization

Since electric and magnetic fields are vector quantities,
both their magnitude and direction must be specified.
But, because these two field directions are always
perpendicular to one another in non-absorbing media,
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the direction of the electric field of a light wave is used
to specify the direction of polarization of the light. The
kind and amount of polarization can be determined and
modified to other types of polarization. If you under-
stand the polarization properties of light, you can
control the amount and direction of light through the
use of its polarization properties.

0.5.1. Types of Polarization

The form of polarization of light can be quite complex.
However, for most design situations there are a limited
number of types that are needed to describe the
polarization of light in an optical system. Fig. .21
shows the path traced by the electric field during one
full cycle of escillation of the wave (T = 1/v) for a
number of different types of polarization, where v is
the frequency of the light. Fig. 0.21(a) shows linear
polarization, where orientation of the electric field
vector of the wave does not change with time as the
field amplitude oscillates from a maximum value in one
direction to a maximum value in the opposite direc-
tion. The orientation of the electric field is referenced
to some axis perpendicular to the direction of propaga-
tion. In some cases, it may be a direction in the labora-
tory or optical system, and it is specified as horizon-
tally or vertically polarized or polarized at some angle
to a coordinate axis.

Because the electric field is a vector quantity, electric
fields add as vectors. For example, two fields, E and Ey,
linearly polarized at right angles to each other and
oscillating in phase (maxima for both waves occur at
the same time), will combine to give another linearly
polarized wave, shown in Fig. 0.21(b), whose direction
(tan6 = £ /E ) and amplitude (VE{+E?) are found by ad-
dition of the two components. If these fields are 90° out
of phase (the maximum in one field occurs when the
other field is zero), the electric field of the combined
fields traces out an ellipse during one cycle, as shown
in Fig.0.21(c}. The result is called elliptically polarized
light. The eccentricity of the ellipse is the ratio of the
amplitudes of the two components. If the two compo-
nents are equal, the trace is a circle. This polarization
is called circularly polarized. Since the direction of
rotation of the vector depends on the relative phases
of the two components, this type of polarization has a
handedness to be specified. If the electric field coming
from a source toward the observer rotates counter-
clockwise, the polarization is said to be left handed.
Right-handed polarization has the opposite sense,
clockwise. This nomenclature applies to elliptical as
well as circular polarization. Light whose direction of
polarization does not follow a simple pattern such as
the ones described here is sometimes referred to as

{a)

A¢ =90°

{©

Figure 0.21. Three special polarization orientations:
{@) linear, along a coordinate axis; (b) linear, compo-
nents along coordinate axes are in phase (A® = 0) and
thus produce linear polarization; (¢) same compo-
nents, 90° out of phase, produce elliptical polariza-
tion.
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Figure 0.22. Geometry for the Brewster angle.

Figure 0.23. A “Pile of Plates” polarizer. This device
working at Brewster angle, reflects some portion of
the perpendicular polarization (here depicted as a
dot, indicating an electric field vector perpendicular
to the page) and transmits all parallel polarization.
After a number of transmissions most of the perpen-
dicular polarization has been reflected away leaving
a highly polarized parallel component.
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unpolarized light. This can be somewhat misleading
because the field has an instantaneous direction of
polarization at all times, but it may not be easy to
discover what the pattern is. A more descriptive term
is randomly polarized light.

Light from most natural sources tends to be randomly
polarized. While there are a number of methods of
converting it to linear polarization, only those that are
commonly used in optical design will be covered. One
method is reflection, since the amount of light reflected
off a tilted surface is dependent on the orientation of
the incident polarization and the normal to the surface.
A geometry of particular interest is one in which the
propagation direction of reflected and refracted rays at
an interface are perpendicular to each other, as shown
in Fig. 0.22. In this orientation the component of light
polarized parallel to the plane of incidence (the plane
containing the incident propagation vector and the
surface normal, i.e., the plane of the page for Fig. 0.22)
is 100% transmitted. There is no reflection for this
polarization in this geometry. For the component of
light perpendicular to the plane of incidence, there is
some light reflected and the rest is transmitted. The
angle of incidence at which this occurs is called
Brewster’s angle, 6, and is given by:

tan8, = n

(0-20)

lrans/nin('idum
As an example, for a crown glass, n = 1.523, and the

Brewster angle is 56.7°. Measurement of Brewster's
angle is part of Project #8,

Sometimes only a small amount of polarized light is
needed, and the light reflected off of a single surface
tilted at Brewster’s angle may be enough to do the job.
If nearly complete polarization of a beam is needed,
one can construct a linear polarizer by stacking a
number of glass slides (e.g., clean microscope slides)
at Brewster's angle to the beam direction. As indicated
in Fig. 0.23, each interface rejects a small amount of
light polarized perpendicular to the plane of incidence.

The “pile of plates” polarizer just described is some-
what bulky and tends to get dirty, reducing its effi-
ciency. Plastic polarizing films are easier to use and
mount. These films selectively absorb more of one
polarization component and transmit more of the
other. The source of this polarization selection is the
aligned linear chains of a polymer to which light-
absorbing iodine molecules are attached. Light that is
polarized parallel to the chains is easily absorbed,
whereas light polarized perpendicular to the chains is
mostly transmitted. The sheet polarizers made by
Polaroid Corporation are labeled by their type and
transmission. Three common linear polarizers are
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HN-22, HN-32, and HN-38, where the number following
the HN indicates the percentage of incident unpolar-
ized light that is transmitted through the polarizer as
polarized light.

When you look through a crystal of calcite (calcium
carbonate) at some writing on a page, you see a double
image. If you rotate the calcite, keeping its surface on
the page, one of the images rotates with the crystai
while the other remains fixed. This phenomenon is
known as double refraction. (Doubly refracting is the
English equivalent for the Latin birefringent.) If we
examine these images through a sheet polarizer, we
find that each image has a definite polarization, and
these polarizations are perpendicular to each other.

Calcite crystal is one of a whole class of birefringent
crystals that exhibit double refraction. The physical
basis for this phenomenon is described in detail in
most optics texts. For our purposes it is sufficient to
know that the crystal has a refractive index that varies
with the direction of propagation in the crystal and the
direction of polarization. The optic axis of the crystal
(no connection to the optical axis of a lens or a system)
is a direction in the crystal to which all other direc-
tions are referenced. Light whose component of the po-
larization is perpendicular to the optic axis travels
through the crystal as if it were an ordinary piece of
glass with a single refraction index, n,. Light of this
polarization is called an ordinary ray. Light polarized
parallel to a plane containing the optic axis has a
refractive index that varies between n, and a different
value, n_. The material exhibits a refractive index n,
where the field component is parallel to the optic axis
and the direction of light propagation is perpendicular
to the optic axis. Light of this polarization is called an
extraordinary ray. The action of the crystal upon light
of these two orthogonal polarization components
provides the double images and the polarization of
light by transmission through the crystals. If one of
these components could be blocked or diverted while
the other component is transmitted by the crystal, a
high degree of polarization can be achieved.

In many cases polarizers are used to provide informa-
tion about a material that produces, in some manner, a
change in the form of polarized light passing through it.
The standard configuration, shown in Fig. 0.24, con-
sists of a light source 5, a polarizer P, the material M,
another polarizer, called an analyzer A, and a detector
D. Usually the polarizer is a linear polarizer, as is the
analyzer. Sometimes, however, polarizers that produce
other types of polarization are used.

The amount of light transmitted by a polarizer depends
on the polarization of the incident beam and the

Figure 0.24. Analysis of polarized light. Randomly
polarized light from source S is linearly polarized
after passage through the polarizer P with irradiance
1. After passage through eptically active material M,
the polarization vector has been rotated through an
angle 6. (The dashed line of both polarizers A and P
denote the transmission axes; the arrow indicates the
polarization of the light.) The light is analyzed by
polarizer A, transmitting an amount /,cos*@ that is
detected by detector D.
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quality of the polarizer. Let us take, for example, a
perfect polarizer — one that transmits all of the light
for one polarization and rejects (by absorption or
reflection) all of the light of the other polarization. The
direction of polarization of the transmitted light is the
polarization axis, or simply the axis of the polarizer.
Since randomly polarized light has no preferred
polarization, there would be equal amounts of incident
light for two orthogonal polarization directions. Thus, a
perfect linear polarizer would have a Polaroid designa-
tion of HN-50, since it would pass half of the incident
radiation and absorb the other half. The source in Fig.
0.24 is randomly polarized, and the polarizer passes
linearly polarized light of irradiance /. If the material M
changes the incident polarization by rotating it through
an angle & what is the amount of light transmitted
through an analyzer whose transmission axis is
oriented parallel to the axis of the first polarizer? Since
the electric field is a vector, we can decompose it into
two components, one parallel to the axis of the ana-
lyzer, the other perpendicular to this axis. That is

E-E cos0é +E,sinfg (0-21)

(Note that the paraliel and perpendicular components
here refer to their orientation with respect to the axis
of the analyzer and not to the plane of incidence as in
the case of the Brewster angle.) The transmitted field is
the parallel component, and the transmitted irradiance
I is the time average square of the electric field

trans
= (E? cos®8) = (E}) cos?6

]mms

or

I =1 cos8 (0-22)

trans

This equation, which relates the irradiance of polarized
light transmitted through a perfect polarizer to the
irradiance of incident polarized light, is called the Law
of Malus, after its discoverer, Etienne Malus, an engi-
neer in the French army. For a nonperfect polarizer, 1,
must be replaced by o/, where o is the fraction of the
preferred polarization transmitted by the polarizer.

0.5.2. Polarization Modifiers

Besides serving as linear polarizers, birefringent crys-
tals can be used to change the type of polarization of a
light beam. We shall describe the effect that these po-
larization modifiers have on the beam and leave the ex-
planation of their operation to a physical optics text.

In a birefringent crystal, light whose polarization is
parallel to the optic axis travels at a speed of ¢ /n ; for
a polarization perpendicular to that, the speed is ¢ /n .
In calcite n | > n, and therefore the speed of light polar-
ized parallel to the optic axis, v , is greater than v .
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Thus, for calcite, the optic axis is called the fast axis
and a perpendicular axis is the slow axis. (In other
crystals n may be greater than n, and the fast-slow
designation would have to be reversed.)

The first device to be described is a quarter-wave
plate. The plate consists of a birefringent crystal of a
specific thickness d, cut so that the optic axis is
parallel to the plane of the plate and perpendicular to
the edge, as shown in Fig.0.25. The plate is oriented so
that its plane is perpendicular to the beam direction
and its fast and slow axes are at 45° to the polarized
direction of the incident linearly polarized light.
Because of this 45° geometry, the incident light is split
into slow and fast components of equal amplitude
traveling through the crystal. The plate is cut so that
the components, which were in phase at the entrance
to the crystal, travel at different speeds through it and
exit at the point when they are 90°, or a quarter wave,
out of phase. This output of equal amplitude compo-
nents, 90° out of phase, is then circularly polarized. It
can be shown that when circularly polarized light is
passed through the same plate, linearly polarized light
results. Also, it should he noted that if the 45° input
geometry is not maintained, the output is elliptically
polarized. The angle between the input polarization
direction and the optic axis determines the eccentricity
of the ellipse.

If a crystal is cut that has twice the thickness of the
quarter-wave plate, one has a half-wave plate. In this
case, linearly polarized light at any angle 8 with respect
to the optic axis provides two perpendicular compo-
nents which end up 180° out of phase upon passage
through the crystal. This means that relative to one of
the polarizations, the other polarization is 180° from its
original direction. These components can be com-
bined, as shown in Fig. 0.26, to give a resultant whose
direction has been rotated 28 from the original polari-
zation. Sometimes a half-wave plate is called a polariza-
tion rotator. It also changes the *handedness” of
circular polarization from left to right or the reverse.
This discussion of wave plates assumes that the crystal
thickness d is correct only for the wavelength of the
incident radiation. In practice, there is a range of
wavelengths about the correct value for which these
polarization modifiers work fairly well.

Waveplates provide good examples of the use of
polarization to control light. One specific demonstra-
tion that you will perform as part of Project #9 con-
cerns reflection reduction. Randomly polarized light is
sent through a polarizer and then through a quarter
wave plate to create circularly polarized light, as noted
above. When circularly polarized light is reflected off a

Linearly
polarized

E ol /‘ Optic Axis

50° out
of phase

Figure 0.25. Quarter-wave plate. Incident linearly
polarized light is oriented at 45° to the optic axis so
that equal E| and E components are produced. The
thickness of the plate is designed to produce a phase
retardation of 90° of one component relative to the
other. This produces circularly polarized light. At
any other orientation elliptically polarized light is
produced.

A i =
‘_)——;:/'/ 180° out "
P e of phase —
- with original
E+field
components

Figure 0.26. Half-wave plate. The plate produces a
180° phase lag between the E, and E components of
the incident linearly polarized light. If the original
polarization direction is at an angle 8 to the optic
axis, the transmitted polarization is rotated through
28 from the original.
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Figure 0.27. Gaussian beam profile. Plot of irradi-
ance versus radial distance from the beam axis.
[Elements of Modern Optical Design, Donald C.
O’Shea, copyright ©, J. Wiley & Sons, 1985. Re-
printed by permission of John Wiley & Sons, Inc.]
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surface, its handedness is reversed (right to left or left to
right). When the light passes through the quarter wave
plate a second time, the circularly polarized light of the
opposite handedness is turned into linearly polarized
light, but rotated 90° with respect to the incident polari-
zation. Upon passage through the linear polarizer a
second time, the light is absorbed. However, light ema-
nating from behind a reflective surface (computer
monitor, for exampie) will not be subject to this absorp-
tion and a large portion will be transmitted by the
polarizer. A computer anti-reflection screen is an
application of these devices. Light from the room must
undergo passage through the polarizer-waveplate
combination twice and is, therefore suppressed, whereas
light from the computer screen is transmitted through
the combination but once and is only reduced in bright-
ness. Thus, the contrast of the image on the computer
screen is enhanced significantly using this polarization
technique.

0.6 Lasers

The output of a laser is very different than most other
light sources. After a description of the simplest type of
beam, the TEM,, mode Gaussian beam and its parame-
ters, we look at means of collimating the beam. The effect
of a laser’s construction on its output and a method by
which this output can be measured will be discussed.

0.6.1. Characteristics of a Gaussian Beam

The term Gaussian describes the variation in the irradi-
ance along a line perpendicular to the direction of propa-
gation and through the center of the beam, as shown in
Fig. 0.27. The irradiance is symmetric about the beam
axis and varies radially outward from this axis with the
form

{0-23)
I(r)=ie i
or in terms of a beam diameter

Hd)=le™
where r, and d, are the quantities that define the radial
extent of the beam. These values are, by definition, the
radius and diameter of the beam where the irradiance is
1/e? of the value on the beam axis, /.

0.6.1.1. Beam Waist and Beam Divergence

Figure 0.27 shows a beam of parallel rays. In reality, a
Gaussian beam either diverges from a region where the
beam is smallest, called the beam waist, or converges to
one, as shown in Fig. 0.28. The amount of divergence or
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convergence is measured by the full angle beam
divergence 8, which is the angle subtended by the 1/e*
diameter points for distances far from the beam waist as
shown in Fig. 0.28. In some laser texts and articles, the
angle is measured from the beam axis to the 1/e® asymp-
tote, a half angle. However, it is the full angle divergence,
as defined here, that is usually given in the specification
sheets for most lasers. Because of symmetry on either
side of the beam waist, the convergence angle is equal to
the divergence angle. We will refer to the latter in both
cases.

Under the laws of geometrical optics a Gaussian beam
converging at an angle of 8 should collapse to a point.
Because of diffraction, this, does not occur. However, at
the intersection of the asymptotes that define 8, the
beam does reach a minimum value d, the beam waist
diameter. It can be shown that for a TEM,, mode d,
depends on the beam divergence angle as:

\= % (0-24)
where 4 is the wavelength of the radiation. Note that for

a Gaussian beam of a particular wavelength, the product
d,f@is constant. Therefore for a very small beam waist
the divergence must be large, for a highly collimated
beam (small &), the beam waist must be large.

The variation of the beam diameter in the vicinity of the
beam waist is shown in Fig. 0.28 and given as

d?=d2+0z? (0-25)

where d is the diameter at a distance +z from the waist
along the beam axis.

0.6.1.2. The Rayleigh Range

It is useful to characterize the extent of the beam waist
region with a parameter called the Rayleigh range. (in
other descriptions of Gaussian beams this extent is
sometimes characterized by the confocal beam parame-
ter and is equal to twice the Rayleigh range.) Rewriting
Eq. 0.25 as

d =d,\1+ (82 /d;)* (0-26)

we define the Rayleigh range as the distance from the
beam waist where the diameter has increased tod ;V2,
Obviously this occurs when the second term under the
radical is unity, that is, when

z-z,-d, /0 (0-27)

Aithough the definition of z, might seem rather arbi-
trary, this particular choice offers more than just
convenience. Figure 0.29 shows a plot of the radius of
curvature of the wavefronts in a Gaussian beam as a
function of z. For large distances from the beam waist
the wavefronts are nearly planar, giving values tending
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Figure 0.28. Variation of Gaussian beam diameter in
the vicinity of the beam waist. The size of the beam
at its smallest point is d; the full angle beam diver-
gence, defined by the smallest asymptotes for the l/e?
points at a large distance from the waist is 6.
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Figure 0.29. Plot of radius of curvature (R) versus
distance (z) from the beam waist. The absolute value
of the radius is a minimum at the Rayleigh range
point, z,. In the limit of geometrical optics, the
radius of curvature of the wavefronts follows the
dashed line.
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toward infinity. At the beam waist the wavefronts are
also planar, and, therefore, the absolute value of the
radius of curvature of the wavefronts must go from
infinity at large distances through a minimum and
return to infinity at the beam waist. This is also true on
the other side of the beam waist but with the opposite
sign. It can be shown that the minimum in the absolute
value of the radius of curvature occurs at z = * z,,, that
is, at a distance one Rayleigh range either side of the
beam waist. From Fig. 0.29, the “collimated” region of
Gaussian beam waist can be taken as 2z,

The Rayleigh range can be expressed in a number of
ways: L _do_4r _md N

T ne’ 4k (0-28)
From this we see that all three characteristics of a
Gaussian beam are dependent on each other. Given
any of the three quantities, d, 6, z,, and the wavelength
of the radiation, the behavior of the beam is completely
described. Here, for example, if a helium-neon laser
(=633 nm) has a specified TEM,, beam diameter of
1mm, then

6= 4A/rd, = (1.27 x 6.33 x 107'm)/(1 x 10°m) = 0.8 mrad

and
z,=d/0=(1x10°m)/(0.8 x 10%rad) = 1.25 m.

The Rayleigh range of a typical helium-neon laser is
considerable.

0.6.2 Collimation of a Laser Beam

Through the use of lenses the divergence, beam waist,
and Rayleigh range of the Gaussian beam can be
changed. However, from the above discussion it is
clear that the relations between the various beam para-
meters cannot be changed. Thus, to increase the colli-
mation of a beam by reducing the divergence requires
that the beam waist diameter be increased, since the
beamn waist diameter-divergence product is constant.
This is done by first creating a beam with a strong
divergence and small beam waist and then putting the
beam waist at the focal point of a long focal length lens.
What this amounts to is putting the beam through a
telescope — backward. The laser beam goes in the
eyepiece lens and comes out the objective lens.

There are two ways of accomplishing this. One uses a
Galilean telescope, which consists of a negative eye-
piece lens and a positive objective lens, as shown in
Fig. 0.30(a). The light is diverged by the negative lens
producing a virtual beam waist and the objective lens
is positioned at a separation equal to the algebraic sum
of the focal lengths of the lenses to produce a more col-
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limated beam. It can be shown that the decrease in the
divergence is equal to the original divergence divided
by the magnification of the telescope. The magnifica-
tion of the telescope is equal to the ratio of the focal
lengths of the objective divided by the eyepiece. The
second method uses a Keplerian telescope (Fig.
0.30(b)). The eyepiece lens is a positive lens so the
beam comes to a focus and then diverges to be colli-
mated by the objective lens.

Project #3 will demonstrate the design of these two
types of laser beam expanders. Each has distinct ad-
vantages. The advantage of the Galilean type of beam
expander occurs for high power or pulsed laser sys-
tems. Since the beam does not come to a focus any-
where inside of the beam expander’s optical path, the
power density of the beam decreases. Thus, if the
lenses and environment can survive the initial beam,
they can survive the beam anywhere in the optical
path. Although the Keplerian beam expander can give
similar ratios of beam expansion, the power density at
the focus of the first lens is very large. In fact, with a
high power, pulsed laser it is possible to cause a
breakdown of the air in the space between the lenses.
This breakdown is caused by the very strong electrical
field that results from focusing the beam to a smaill
diameter creating miniature lightning bolts. (Many
researchers have been unpleasantly surprised when
these “miniature” lightning bolts destroyed some very
expensive optics!)

The primary advantage for the Keplerian beam ex-
pander is that a pinhole of an optimum diameter can be
placed at the focus of the first lens to “clean” up the
laser beam by rejecting the part of the laser energy
that is outside of the pinhole diameter. This concept of
“spatial filtering” will be explored in Project #10.

0.6.3 Axial Modes of a Laser

The properties of laser light include monochromaticity,
low divergence (already explored in the previous sec-
tions), and a high degree of coherence, which encom-
passes both of these properties, This section is a dis-
cussion of the coherence of the laser and a historical
experiment that illustrates one of the concepts using a
modern device.

A complete discussion of the principle of laser action
would take a substantial amount of space and reading
time. For an explanation of the concept we refer you to
the references. The basis of lasers is a physical process
called stimulated emission. It appears as the third and
fourth letters of the acronym, LASER (Light Amplifica-
tion by Stimulated Emission of Radiation), Amplifica-
tion is only the beginning of the process in most lasers,

i !
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Figure 0.30. Gaussian beam collimation. (a) Galilean
telescope. (b) Keplerian telescope. Eyepiece focal
length, f; objective focal length, f.

25



Qutput Beam

100% Reflecting

95% Reflecting -
Mirror 5% Transmitting Mirror

Figure 0.31. The laser cavity. The distance between
mirrors is an important parameter in the output of a
laser.

Figure 0.32. Standing wave picture.
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since the increase in light as it passes through an
amplifying volume is usually quite modest. If the
radiation was only amplified during a single pass
through the volume, it would be only marginally useful.
However, when mirrors are placed at both ends of the
amplifying medium, the light is returned to the me-
dium for additional amplification (Fig. 0.31). The useful
output from the laser comes through one of the mir-
rors, which reflects most of the light, but transmits a
small fraction of the light, usually on the order of 5%
(up to 40% for high power lasers). The other mirror is
totally reflecting. But the laser mirrors do more than
confine most of the light. They also determine the
distribution of wavelengths that can support amplifica-
tion in the laser.

The mirrors serve as a simple, but effective, interfer-
ometer and for only certain wavelengths, just as in the
case of the Michelson interferometer, will there be
constructive interference. The mirrors form a resonant
structure that stores or supports only certain frequen-
cies. It is best compared to the resonances of a guitar
string in which the note that the string produces when
plucked is determined by the length of the string. By
changing the location of the finger on a guitar string a
different note is played. The note (really, notes) is
determined by the amount of tension the guitarist has
put on the string and the length of the string. Any
fundamental physics book will show that the condi-
tions imposed upon the string of length L will produce
a note whose wavelength is such that an integral
number of half wavelengths is equal L,

gi/2-=L. (0-29)

In Fig. 0.32 a standing wave with three hall wave-
lengths is shown. In most lasers, unless special pre-
cautions are taken, a number of wavelengths will
satisfy this resonance condition. These wavelengths
are referred to as the axial modes of the laser. Since
L=g 4/2, where ¢ is an integer, the wavelengths sup-
ported by the laser are

A =2Liq (0-29a)

The frequencies of these modes are given by v = ¢ /4,
where ¢ is the speed of light.

Inserting the expression for the wavelengths, the
frequencies of the resonant modes are given by

v,=q /2D,

where g is an integer. The frequency separation
between these axial modes equals the difference
between modes whose integers differ by one:

An=v_  -v, =@+1)c J2L-qgc /2L =c /2L, (0-30)

1



50 the separation between neighboring modes of a
laser is constant and dependent only on the distance
between the mirrors in the laser, as shown in Fig. 0.33.
Since the amount of power obtained from small helium-
neon lasers, such as those used for the projects de-
scribed in this manual, is related to the length of the
laser, the separation between mirrors is set by the
laser manufacturers to produce the required power for
the laser. But the band of wavelengths that can main-
tain stimulated emission is determined by the atomic
physics of the lasing medium, in this case, neon. That
band does not change radically for most helium-neon
laser tubes. Therefore, the number of axial modes is
mainly dependent on the distance between the mirrors,
L. The farther apart the mirrors are, the closer are the
axial mode frequencies. Thus, long high power helium-
neon lasers have a large number of axial modes,
whereas, the modest power lasers used in this Projects
in Optics kit produce only a small number (usually
three) of axial modes.

One of the other relations between neighboring laser
modes, beside their separation, is that their polariza-
tion is orthogonal (crossed) to that of their neighbors
(Fig. 0.34). Thus, if we examined a three-mode laser
with the appropriate tools, we would expect to find
that two of the modes would have one polarization and
the other would have a perpendicular polarization.
This means that, while axial modes are separated in
frequency by ¢ /2L, modes of the same polarization are
separated by c/L.

Looking through a diffraction grating at the cutput of a
three-mode laser, we see a single color. High resolution
interferometers must be employed to display the axial
modes of a laser. However, it is also possible to use a
Michelson interferometer to investigate the modes
without resorting to high resolution devices. This
technique has special applications in the infrared
region of the spectrum.

(0.6.4 Coherence of a Laser

If we speak of something as being “coherent” in every-
day life, we usually mean that it, a painting, a work of
music, a plan of action, “makes sense.” It “hangs
together.” There is in this concept the idea of consis-
tency and predictability. The judgement of what is
coherent, however, is one of individual taste. What one
person may find coherent in heavy metal rock music,
another person would hear in rhythm and blues ... or
elevator music, perhaps. This concept of coherence as
a predictable, consistent form of some idea or work of
art has much the same meaning when applied to light
sources. How consistent is a light field from one point
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Figure 0.33. Laser mode distribution. Plot of power
in laser output as a function of frequency.

Figure 0.34. Output from a three mode laser. The
relative polarization of each mode is indicated at its
base.
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to another? How do you make the comparison? The
interference of the light beam with itself does the
comparing. If there is a constant relation between one
point on a laser beam and another point, then the
interference of waves separated by that distance
should produce a stable interference pattern. If,
however, the amplitude or phase or wavelength
changes between these two points, the interference,
while it is still there at all times, will constantly vary
with time. This unstable interference pattern may still
exhibit fringes, but the fringes will be washed out. This
loss of visibility of fringes as a function of the distance
between the points of comparison is measure of the
coherence of the light. This visibility can be measured
by the contrast of the interference fringes. The con-

trast is defined by /

max__ [min
T + o (0-31)
where [ __is the irradiance of the bright interference
fringes and /__is the irradiance of the dark interference
fringes (Fig. 0.35). This contrast is determined by
passing the light from the source through a Michelson
interferometer with unequal arms. By changing the
path length difference between the arm in the interfer-
ometer, the visibility of the fringes as a function of this
difference can be recorded. From these observations,
the measurement of the coherence of a source can be
done using a Michelson interferometer.

If a source were absolutely monochromatic, there
would be no frequency spread in its spectrum. That is,
its frequency bandwidth would be zero. For this to be
true, all parts of the wave exhibit the same sinuscidal
dependence from one end of the wave to the other.
Thus, a truly monochromatic wave would never show
any lack of contrast in the fringes, no matter how large
of a path length difference was made. But all sources,
even laser sources contain a distribution of wave-
lengths. Therefore, as the path length difference is
increased, the wavefront at one point on the beam gets
out of phase with another point on the beam. A meas-
ure of the distance at which this occurs is the coher-
ence length [ of a laser. It is related to the frequency
bandwidth of a laser by

Av-cl (0-32)

Any measurement of the coherence length of a light
source by observation of the visibility of fringes from a
Michelson interferometer will yield information on the
bandwidth of that source and, therefore, its coherence.
For example, suppose the source is a laser with some
broadening. As the length of the one of the arms in a
Michelson interferometer, as shown in Fig. 0.36,
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becomes unequal (mirror moved from A to B), the one
part of a wave will interfere with another part that is
delayed by a time equal to the difference in path length
divided by the speed of light, Eventually the waves
begin to get out of step and the fringe contrast begins
to fall because the phase relations between the two
waves is varying slightly due to the spread in frequen-
cies in the light. The greater the broadening, the more
rapidly the visibility of the fringes will go to zero.

One particularly interesting case consists of a source
with only a few modes present as is the case for the
three-mode helium-neon laser discussed above. Be-
cause only light of the same polarization can interfere,
there will be two modes (4, 4,) in the laser that can
interfere with each other. The third mode (4.} with
orthogonal polarization is usually eliminated by
passing the output of the laser through a polarizer.
With the interferometer mirrors set at equal path
length there are two sets of {ringes, one from each
mode. Since the path length difference is zero, these
two sets of high contrast fringes overlap each other.
But as the path length increases, the fringes begin to
get out of step. Until, finally, the interference maximum
of one set of fringes overlaps the interference minimum
of the other set of fringes and the fringe contrast goes
to zero. The calculation of this condition is fairly
simple. The condition for an interference maximum is
given by

L -L,=mid/2 m-=aninteger (0-33)
and for an interference minimum by
L -L,=mi/4 m=oddintegers (0-34)

If we assume that the change in path length is from
zero path length to the point where the visibility first
goes to zero, then for one wavelength, 1,

L -L,=ml/2 m = aninteger (0-35)

and for the other mode with the same polarization,
there is a minimum.

L -L =mA/2+ /4 (0-35)
Equating these two expressions and rearranging terms,
gives
ma [2-mA/2 = m(A-A}2 = A/4. (0-35)
or

MmAL = A2

Wavelength separation can be expressed as a fre-
quency separation by Av

AA = AAviv (0-36)
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where 4 and v are the average values in the intervals
A and Av. Inserting this expression for A4, we obtain

Av=v/2m. (0-37)

The integer m is an extremely large number in most
cases and is not easily determined, but it is related to
the average wavelength of the source byl -L,= ma/2.
If we set AL =L -L, solve form and insert in the
expression for Av,

Av=v/2m = Av/4AL = ¢ J4AL, (0-38)

since Av = c.

Thus the frequency separation between modes can be
measured by determining the path length difference
when the two interference fringe patterns are out of
step with one another, causing the visibility to go to
zero, as depicted in Fig. 0.37. It can also be
demonstrated that there are additional minima in the
visibility at Av =3¢ /4AL, 5c¢/4AL, etc. Visibility maxima
occur halfway between these minima as the two fringes
patterns get back into step. In Project#7, this effect will
enable you to determine the mode separations for the
laser used in these projects. What has been derived
here is a simple case of a much more involved applica-
tion of this technique. It is possible to measure the
fringe contrast as a function of mirror position (called
an interferogram) and store it in the memory of a com-
puter. It has been shown that a mathematical transfor-
mation (the same Fourier Transform that will be
discussed in the next section) of the visibility function
yields the frequency spectrum of the source.

While it might be considered difficult, the advent of
powerful computers has reduced the cost and en-
hanced the utility of this technique, particularly in the
far infrared part of the spectrum. These devices are
known as Fourier transform spectrometers.

0.7 Abbe Theory of Imaging

The earlier discussion of imaging depended upon
tracing a series of rays to determine the location and
size of the image. It was shown that only a few rays
were needed. This approach ignores the possibilities
that the source could be monochromatic and suffi-
ciently coherent that diffraction and interference
effects could play a part in the formation of an image.
What we will describe and then demonstrate in Project
#10, is that after the light that will form an image has
traversed the lens, we can intervene and change the
image in very special ways. This approach to imaging
has found use in a number of applications in modern
optics. To begin to understand this concept, we need
to review briefly the diffraction grating discussed in
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Section 0.4.3, since the grating is one of the simplest
illustrations of this new way of thinking about imaging.
Consider a diffraction grating consisting of a series of
equally spaced, narrow absorbing and transmitting
(black and white) bands. It is possible to determine
mathematically not only the directions of the diffracted
orders

sinf -mAj/d m = aninteger, (0-39)

but also the relative irradiances of the diffracted spots
to one another. If we insert a lens after the diffraction
grating, we can relocate the orders of the diffraction
grating from infinity to the back focal plane of the lens
(Fig. 0.38). We will see how this can be used to under-
stand imaging.

0.7.1 Spatial Frequencies

We are used to the idea of repetitions in time, Electrical
and audio sources of signals with single frequencies,
particularly as they relate to scund are used to test
equipment for their response. A good high fidelity
system will reproduce a wide range of frequencies
ranging from the deep bass around 20 Hz (cycles per
second), that is as much felt as it is heard, to the nearly
impossible to hear 15,000 Hz, depending on how well
you have treated your ears during life. As noted earlier,
the frequency of the electromagnetic field determines
whether the radiation is visible to the eye. Again, this
periodic variation in the electric field takes place in
time. Just as it is possible to speak about variation of
electrical waves and sound with time, in optics,
variations in space can be expressed as spatial fre-
quencies. These are usually expressed in cycles/mm
{or mm"). They indicate the rapidity with which an
object or image varies in space instead of time. An
example that shows a number of spatial frequencies is
given in Fig. 0.39.

As in the case of many sounds and electrical signals,
most spatially repetitive patterns do not consist of a
single frequency, but as a musical chord, are made up
of some fundamental frequency plus its overtones, or
higher harmonics. The discussion of spatial frequen-
cies in optics is based on some interesting, but rela-
tively complicated mathematics. You may want to read
this section once to get the general ideas, then come
back later after you have done Project #10. Certainly,
here is a case where hands-on work will improve your
understanding of the discussion of the subject.

An example of an object with a few spatial frequencies
is the diffraction grating. If the grating just discussed
consisted of a sinusoidal variation, as shown in Fig.
0.40(a), there would only be a zero order and the first

Figure 0.39. Spatial frequencies in an object.
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Figure .40. Sinusoidal grating versus black and
white grating (Fourier analysis).
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orders {m = £1). As repetitive patterns depart from
sinusoidal, additional diffraction orders appear and in
the case of the black and white grating, a whole series
of diffraction orders are present (Fig. 0.40(b)).

All of this can be expressed mathematically in terms of
Fourier (Four-ee-ay) Theory. We will not go into the
mathematical expression of the theory, but only
graphically express the result as simply as possible.

Any periodic (repeating) function can be expressed as
a series of sine and cosine functions consisting of the
fundamental periodic frequency () and its higher
harmonics (those frequencies that are multiples of the
fundamental frequency, f (2f, 3£, 4/, ...) The amount that
each frequency contributes to the original function can
be calculated using some standard integral calculus
expressions. The decomposition of the periodic
pattern into its harmonics is referred to as Fourier
Analysis. This analysis determines the amplitude of
each harmonic contribution to the original function
and its phase relative to the fundamental (in phase or
180° out of phase).

The procedure can be, in a sense, reversed. If a pattern
at the fundamental frequency is combined with the
appropriate amounts of the higher harmonics, it 1s
possible to approximate any function with a repetition
frequency of the fundamental. This is referred to as
Fourier Synthesis. To completely synthesize a function
such as our example of an alternating black and white
grating, an infinite number of harmonics would be
needed. If only frequencies up to some specific value
are used, the synthesized function will resemble the
function, but it will have edges that are not as sharp as
the original. A simple example (Fig. 0.41) using only a
fundamental and two harmonics shows the beginning
of the synthesis of a square wave function, similar to
our black and white grating. What you will be investi-
gating in Project #10 are optical techniques that use
Fourier analysis and synthesis in creating images.

0.7.2 Image Formation

Ii the black and white grating is illuminated with plane
waves of monochromatic light, a number of diffraction
orders will be generated by the grating. These plane
wave beams diffracted at different angles given by Eq.
0-39, can be focused with a lens located behind the
diffraction grating, as shown in Fig. 0.42. The focused
spots have intensities that are proportional to the
square of the amplitudes that we could calculate for
this diffraction grating. In effect, the laser plus lens
combination serves as an optical Fourier analyzer for a
diffractive object.
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When a laser beam illuminates a grating, the light will
diffract and the spectrum of spatial frequencies will be
displayed in the back focal plane of the lens. It turns
out that even if the object is not a grating or a series of
lines with a number of repetitive spacings, the light
pattern in the back focal plane still describes the
content of spatial frequencies found in the object.
Objects that are large and smoothly varying in their
shading represent low spatial frequencies and will not
diffract the beam much. Their contributions, there-
fore, lay close to the optical axis of the lens. Objects
that are small or have fine detail and sharp edges will
cause substantial diffraction and their contributions
will be found further from the optical axis in the back
focal plane of the lens.

Suppose as an object we use a fine, square mesh wire
screen. This is a pair of crossed gratings only coarser
than the diffraction grating just discussed earlier (Fig.
0.42). When this square grating is illuminated by a
laser beam, the diffraction orders are focused to a
series of spots at the back of the focal plane of the lens
and the spatial frequencies form a two-dimensional
grid of points. The separation between the points is de-
termined by the distance between neighboring wires,
representing the grating constant for this coarse
grating.

If the lens is more than one focal length from the
grating, then somewhere beyond the Fourier transform
plane, a real image of the grating will be formed. The
geometry is shown in Fig. 0.43. The interesting point of
this arrangement is that the image can be understood
as a light distribution that arises out of the interference
of the light from the spatial frequency components of
the object located at the back focal plane of the lens.
In other words, the image is a Fourier synthesis of the
the spatial frequencies in the grating,

This imaging can be thought of as a two step process:
Fourier analysis followed by Fourier synthesis, This
approach to analyzing images was first proposed by
Ernst Abbe, a lecturer at the University of Jena, who
was hired by Carl Zeiss to understand and design
microscope lenses, After some study one sees that the
larger the collection angle of an imaging lens, the
higher the possible resolution, since the higher spatial
frequency components appear farther from the axis.
Although very little light is collected near the edge of
the lens, it is this light that contributes to the fine
detail in high resolution images.
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Figure 0.42. Optical Fourier analysis.
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0.7.3 Spatial Filtering

Since the light in the Fourier transform plane (Fig 0.43)
is arranged according to increasing spatial frequency
with radius, then any intervention in that plane in the
form of a mask will change the distribution of spatial
frequencies in the plane. It will also change the content
of the image, but in a very predictable way.

The procedure of modifying an image by “changing”
the spatial frequencies contained in it is called spatial
filtering. One example of such a procedure is the
spatial filtering of a transparency of a picture of a tele-
vision screen. The Fourier transform of the picture is a
rather raggedy-looking patch at the center of the
picture and a series of equally spaced dots arranged in
a vertical line. These dots represent a periodic, grating-
like feature in the picture. This grating is due to the
series of parallel lines, called a raster, that is used to
build up an image on the TV screen. The electron beam
that writes on the face of the tube in a TV set does 50
as a series of parallel lines. By turning the beam on and
off as it is swept across the screen and dropping down
a little on each sweep, the circuitry builds up a picture
on the tube. If you look at a TV screen up close you can
see the raster. If the dots represent the raster, where is
the rest of the image? It resides in the raggedy-looking
patch at the center of the beam. This analysis and
synthesis process of imagery will be demonstrated as
one of the experiments in Project #10.

There are a number of applications that are based on
this approach to imaging. One of these “cleans up” a
laser beam. The irradiance distribution of the beam in
many lasers is Gaussian (Section 0.6.1) as it exits the
output mirror of the laser. However, dust and small
imperfections in the lenses, windows, and surfaces that
it traverses or reflects from can produce irregularities
in the irradiance pattern. The Gaussian distribution
represents a low frequency spatial variation in the
beam, whereas the irregularities contain higher spatial
frequencies. When the laser beam is focused with a
microscope objective, as shown in Fig. 0.44, these
variations are arranged according to their spatial
frequencies. If a small pinhole, whose diameter is
sufficiently large to pass the low frequency Gaussian
portion of the beam and block the high frequency part,
the irregularities will be removed from emerging beam
and a “clean” laser beam will result.




d3833333333333333333333333333333333333313313313313313313333438

Another application involves the use of spatial frequen-
cies for object recognition. In some areas of photo-
graphic surveys, the amount of data to be analyzed is
enormous. Provided a feature of interest has some
particular set of spatial frequencies connected with it
(spacing between ties in the case of railroads, for
example), the laser and lens combination can be used
to recognize the possible presence of these features in
the photograph. Other applications include inspection
of products, such as the tips of hypodermic needles.
The average spatial frequency pattern for a large
number of good needles is stored in a computer
memory. Then the pattern of each new tip is compared
to it. Those needles that do not fit the stored pattern to
within certain criteria are then rejected. Since the
actual position of the tip does not affect the spatial
frequency pattern, the test is insensitive to location
errors, whereas a direct inspection of the image of the
needle tip would have to locate it with a high degree of
precision.
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